Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(7): e1010689, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35816544

RESUMO

Favipiravir is a nucleoside analogue that inhibits the replication and transcription of a broad spectrum of RNA viruses, including pathogenic arenaviruses. In this study, we isolated a favipiravir-resistant mutant of Junin virus (JUNV), which is the causative agent of Argentine hemorrhagic fever, and analyzed the antiviral mechanism of favipiravir against JUNV. Two amino acid substitutions, N462D in the RNA-dependent RNA polymerase (RdRp) and A168T in the glycoprotein precursor GPC, were identified in the mutant. GPC-A168T substitution enhanced the efficiency of JUNV internalization, which explains the robust replication kinetics of the mutant in the virus growth analysis. Although RdRp-N462D substitution did not affect polymerase activity levels in a minigenome system, comparisons of RdRp error frequencies showed that the virus with RdRp-D462 possessed a significantly higher fidelity. Our next generation sequence (NGS) analysis showed a gradual accumulation of both mutations as we passaged the virus in presence of favipiravir. We also provided experimental evidence for the first time that favipiravir inhibited JUNV through the accumulation of transition mutations, confirming its role as a purine analogue against arenaviruses. Moreover, we showed that treatment with a combination of favipiravir and either ribavirin or remdesivir inhibited JUNV replication in a synergistic manner, blocking the generation of the drug-resistant mutant. Our findings provide new insights for the clinical management and treatment of Argentine hemorrhagic fever.


Assuntos
Arenavirus , Febre Hemorrágica Americana , Vírus Junin , Amidas , Antivirais/farmacologia , Antivirais/uso terapêutico , Febre Hemorrágica Americana/tratamento farmacológico , Humanos , Vírus Junin/genética , Pirazinas , RNA Polimerase Dependente de RNA/genética , Replicação Viral
2.
Viruses ; 15(1)2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36680145

RESUMO

Although many arenaviruses cause severe diseases with high fatality rates each year, treatment options are limited to off-label use of ribavirin, and a Food and Drug Administration (FDA)-approved vaccine is not available. To identify novel therapeutic candidates against arenaviral diseases, an RNA polymerase I-driven minigenome (MG) expression system for Lassa virus (LASV) was developed and optimized for high-throughput screening (HTS). Using this system, we screened 2595 FDA-approved compounds for inhibitors of LASV genome replication and identified multiple compounds including pixantrone maleate, a topoisomerase II inhibitor, as hits. Other tested topoisomerase II inhibitors also suppressed LASV MG activity. These topoisomerase II inhibitors also inhibited Junin virus (JUNV) MG activity and effectively limited infection by the JUNV Candid #1 strain, and siRNA knockdown of both topoisomerases (IIα and IIß) restricted JUNV replication. These results suggest that topoisomerases II regulate arenavirus replication and can serve as molecular targets for panarenaviral replication inhibitors.


Assuntos
Arenavirus , Vírus Junin , Antivirais/farmacologia , DNA Topoisomerases Tipo II/genética , Vírus Junin/fisiologia , Vírus Lassa , Inibidores da Topoisomerase II/farmacologia , Humanos
3.
J Gen Virol ; 101(6): 573-586, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375950

RESUMO

Bone marrow stromal cell antigen-2 (BST-2), also known as tetherin, is an interferon-inducible membrane-associated protein. It effectively targets enveloped viruses at the release step of progeny viruses from host cells, thereby restricting the further spread of viral infection. Junin virus (JUNV) is a member of Arenaviridae, which causes Argentine haemorrhagic fever that is associated with a high rate of mortality. In this study, we examined the effect of human BST-2 on the replication and propagation of JUNV. The production of JUNV Z-mediated virus-like particles (VLPs) was significantly inhibited by over-expression of BST-2. Electron microscopy analysis revealed that BST-2 functions by forming a physical link that directly retains VLPs on the cell surface. Infection using JUNV showed that infectious JUNV production was moderately inhibited by endogenous or exogenous BST-2. We also observed that JUNV infection triggers an intense interferon response, causing an upregulation of BST-2, in infected cells. However, the expression of cell surface BST-2 was reduced upon infection. Furthermore, the expression of JUNV nucleoprotein (NP) partially recovered VLP production from BST-2 restriction, suggesting that the NP functions as an antagonist against antiviral effect of BST-2. We further showed that JUNV NP also rescued the production of Ebola virus VP40-mediated VLP from BST-2 restriction as a broad spectrum BST-2 antagonist. To our knowledge, this is the first report showing that an arenavirus protein counteracts the antiviral function of BST-2.


Assuntos
Antígenos CD/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Vírus Junin/fisiologia , Nucleoproteínas/metabolismo , Proteínas do Core Viral/metabolismo , Liberação de Vírus/fisiologia , Células A549 , Antivirais/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/metabolismo , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Interferons/farmacologia , Vírus Junin/efeitos dos fármacos , Liberação de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
4.
Arch Virol ; 162(7): 1887-1902, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28271163

RESUMO

Molecular characterization of neuraminidase (NA) gene of 25 influenza A(H3N2) virus isolates (2009-2013) archived at the Manipal Centre for Virus Research was carried out. The annual rate of amino acid substitutions in the N2 gene of influenza A(H3N2) virus isolates was 0.2-0.6%. Out of the 25 NA sequences analyzed, catalytic site mutations were observed in three isolates. Two of the mutations (D151G and E276G) were detected in functional catalytic residues, and an E227V mutation was detected in the framework residues. To the best of our knowledge, NA inhibitor resistance associated with the mutations E276G and E227V has not been reported. However, the mutation D151G, which is commonly associated with culturing of influenza A(H3N2) virus in Madin-Darby canine kidney (MDCK) cells, has been reported to result in a reduction in virus susceptibility to NA inhibitor drugs. Our study also detected mutations in antigenic residues. Some of the mutations (except D197G, K249E, A250T, S334C, and H347R/N) remained conserved in isolates of succeeding seasons. Antigenic residue mutations (D197G and S334C) have not been reported globally to date. The effect of these catalytic and antigenic mutant residues on drug and antibody binding was analyzed using three-dimensional structural analysis and biochemical assays. Antigenic variability of influenza A(H3N2) viruses is a major concern, and vaccine failures are mainly due to genetic variations in the HA gene. Our study documents that genetic changes in N2 occur at a slower rate, and this information is useful for the consideration and standardization of NA in influenza vaccines.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação Viral da Expressão Gênica/fisiologia , Vírus da Influenza A Subtipo H3N2/metabolismo , Influenza Humana/epidemiologia , Influenza Humana/virologia , Neuraminidase/metabolismo , Antígenos Virais , Antivirais/química , Antivirais/farmacologia , Sítios de Ligação , Evolução Molecular , Variação Genética , Humanos , Índia/epidemiologia , Vírus da Influenza A Subtipo H3N2/genética , Neuraminidase/genética , Oseltamivir/química , Oseltamivir/farmacologia , Ligação Proteica
5.
J Med Virol ; 89(7): 1174-1178, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28004398

RESUMO

Single nucleotide polymorphisms (SNPs) at D151 position of neuraminidase (NA) gene of influenza A (H3N2) virus has been associated with drug resistance and increased binding affinity. NA-D151G/N-substitutions of influenza A (H3N2) viruses are frequently induced and selected by culturing in Madin-Darby canine kidney (MDCK) cell lines. It is important to consider and exclude D151G/N mutants after isolation of influenza virus in MDCK cell line; since, the substitutions can highly influence the results of experimental research. The study aims to develop an allelic discrimination real-time reverse transcriptase polymerase chain reaction (RT-PCR) for the screening of D151G/N mutants. Thirty-six influenza A (H3N2) virus isolates were included and screened for D151G/N mutants using allelic discrimination assay. Out of the 36 isolates, 11 isolates (30.5%) were detected as heterozygous for D and G/N substitutions. Twenty-one (58.3%) isolates were identified as homozygous wild type and four isolates (11.1%) were undetermined. Isolates with substitutions at D151 position were sequenced by Sanger sequencing method. The present study demonstrates a rapid and convenient method for primary screening of the mutation after culturing of the influenza virus in MDCK cell lines in order to avoid potential misinterpretations of results and improve the quality of experimental research.


Assuntos
Alelos , Vírus da Influenza A Subtipo H3N2/genética , Mutação , Neuraminidase/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Cães , Farmacorresistência Viral , Humanos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/enzimologia , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
6.
J Med Virol ; 89(2): 202-212, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27380821

RESUMO

Genetic analysis of neuraminidase gene sequences in 23 archived isolates of influenza A(H1N1)pdm09 virus, isolated during the 2009-2012 influenza seasons, was carried out to determine the genetic variability. Amino acid substitutions were observed at the rates of 0.3-0.7% per year. The catalytic site consisting of 8 functional and 11 framework residues were found conserved in 20 isolates and mutated in three (E228G, E278G, and N295T) isolates. To the best of our knowledge the three catalytic site mutants observed in our study have not been reported elsewhere to date. Similarly, mutations in the antigenic sites (K217E, K254E, V267A, and D451E except I263V) are discussed for the first time through this article. The effect of these mutations on drug and antibody binding were analyzed using biochemical and structural studies. Detailed studies on the neuraminidase gene are sparse and our study may serve as an appropriate platform to gain insights about the evolution of influenza virus, thereby facilitating drugs/vaccines design and development. J. Med. Virol. 89:202-212, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/virologia , Neuraminidase/genética , Proteínas Virais/genética , Substituição de Aminoácidos , Anticorpos Antivirais/metabolismo , Antivirais/metabolismo , Domínio Catalítico , Sequência Conservada , Epitopos/genética , Humanos , Índia , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Taxa de Mutação , Ligação Proteica , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...